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Hypothese
Dans tout ce chapitre, E est un ensemble, et K désigne R ou C.
1 Vocabulaire introductif
1.1 Loi de composition interne
Définition 19.1 - Loi de composition interne

. On appelle loi de composition interne sur E (en abrégé l.c.i.) toute application de E x E dans E. E

b e e e e e e e e o e o e e e e o o o e o o 1
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Structures algébriques

Etant donné une l.c.i. notée T : E X E — E, on noterax Ty au lieude T (x,y).

| Méthode |

Pour montrer qu'une application T est une l.c.i. sur E, il faut montrer que cette application est bien
définie : que pour tous x,y € E, 'expression x Ty a un sens et appartient bien a E.

Exemple 1. o Leslois +, — et x sont des l.c.i. sur Z car ces applications sont bien définies de Z x Z dans Z.
Idem pour Q, R et C.

o Laloi — n’est pas une l.c.i. sur N, car cette application n’est pas bien définie de N x N dans N : par exemple
2—-3¢N.
o Laloi / (division) n’est pas une l.c.i. sur R car, par exemple, 2/0 n’a pas de sens. Par contre la loi / est une
Lci surRY .
Exemple 2. On pose E = ] —1,1 [ et on définit I'application * par :
x:EXE—E
X+y
14 xy
Montrer que * est bien définie, donc que * est une l.c.i. sur E.

(x,) =

1.2 Commutativité, associativité

Définition 19.2 - Commutativité, associativité

E Une l.c.i. T sur un ensemble E est dite :
. e commutativesi Vx,y€E xTy=yTx

e associativesi Vx,y,z€E (xTy)Tz=xT(yTz)
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Structures algébriques

Exemple 3. o Leslc.i. + et x sont commutatives et associatives sur N, Z, Q, R et C.

o Barrer ce qui ne convient pas:lal.ci. —surZ est/n’estpas commutativeet est/n’estpas associa-
tive. Idem pour Q, R et C.

o Pour tout ensemble Q, la réunion U et I'intersection N sont des l.c.i. commutatives et associatives sur
I'ensemble E = Z(Q).

Exemple 4. On reprend I'Exemple 2, avec E = ] —1,1 [ et'application *. Montrer que * est commutative.

Vérifier brievement que I'application * est associative.

Remarque (Associativité et réécriture d’expressions). Si T est une l.c.i. associative sur E, alors on peut écrire
sans ambiguité x T y T z sans préciser les parenthéeses. On peut de méme écrire x; Tx; T ... Tx, sans ambiguité.

Théoréme 19.3 |

Soit X un ensemble. On considére XX I'ensemble des applications de X dans X. Alors :
e la composition o est une l.c.i. sur X*.
e o est associative.

e o est non commutative (sauf si X est vide ou un singleton).

Ainsi, pour toutes applications f,g,h € XX, on peut écrire f o goh sans ambiguité .

Définition 19.4
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Bien entendu, si T est commutative, alors tous les éléments de E commutent deux a deux.

Exemple 5. Soit f et g les fonctions de C* définies par f(z) = z% et g(z) = z. Montrer que f et g commutent.

1. Avec E i> F&aol H,onaencore (hog)o f=ho(go f),sibien qu'on peut écrire 1o go f sans ambiguité. On dit encore dans ce

cadre que o est associative, mais c’est un abus car o ne représente pas une l.c.i. : pour g o f, on dénote o I'application de G x FE dans
GE, tandis que pour i o g, on dénote o 'application de H G % G' dans H .
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1.3 Elément neutre

Définition 19.5 — Elément neutre

On suppose que T est une l.c.i. sur E. On dit que e € E est1’élément neutre (pour T) si

Te= .

elx=x

Lorsqu’un tel élément neutre existe, il est unique.

11 faut bien vérifier que xTe = x ET que eTx = x, et ce pour tout x € E. Cependant, sila loi T est
commutative, il est suffisant de vérifier que x T e = x.

Démonstration. Démontrons I'unicité.

Exemple 6.

o 0estl’élément neutre de + sur N, Z, Q, R et C. En effet, pour tout x appartenant a un de ces ensembles, on
a
x+0=04+x=x

(e]

1 estI'élément neutre de x sur N, Z, QQ, R et C. En effet, pour tout x appartenant a un de ces ensembles, on
a
xx1l=1xx=x

o

Sur Z,Q,R,C, lal.c.i. — n"admet pas d’élément neutre.

(¢]

Soit X un ensemble. X* muni de la loi o admet pour élément neutre..........

(e]

Soit Q un ensemble. & (Q) muni de la loi U admet pour élément neutre .........

e}

Soit Q un ensemble. &7(Q) muni de la loi N admet pour élément neutre .........

| Méthode |

Pour montrer qu'une loi T admet un élément neutre, il faut partir de la relation x T e = x pour en déduire
la valeur de e qui convient. Attention a vérifier aussi e Tx = x si T n’est pas commutative !

Exemple 7. On reprend I'Exemple 2, avec E = } —1,1 [ et I'application *. Montrer que * admet un élément
neutre, qu'on notera e.
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1.4 Elément symétrisable

Définition 19.6 — Elément symétrisable

Soit T unel.c.i. sur E et e € E un élément neutre pour T.On dit qu'un élément x de E est symétrisable
(pour T) si
xTy=e
dyeFE { ’

ylix=e

Tout élément y € E qui vérifie les deux égalités ci-dessus est appelé un symétrique de x (pour T).

A Il faut bien vérifier que x Ty = ¢ ET que y Tx = e. Cependant, silaloi T est commutative, il est suffisant
de vérifier que x Ty = e. Bien entendu, la valeur de y dépendra de x.

Remarque. Un méme élément x peut a priori avoir plusieurs symétriques. Néanmoins, trés souvent, ce symé-
trique est unique, et on le note en général x', ou —x, ou encore x ! (selon la loi ou la notation imposée par
I’énoncé, cf section 2.2).

Exemple 8. o Pourlal.c.i. 4+ dans Z, Q, R ou C, I'’élément neutre est 0. De plus, tout élément x est symétri-
sable, et son symétrique esty = —x.

o Pourlal.ci. 4 dans N, seul I'élément 0 est symétrisable : son propre symétrique est lui-méme.

o Pourlal.c.i. x dans , R ou C, I'élément neutre est 1. De plus, tout élément non nul x est symétrisable, et

son symétrique est y = x L

o Pourlal.ci. x dans Z, seuls les éléments 1 et —1 sont symétrisables : ils sont leur propre symétrique.

| Méthode |

Pour montrer qu'un élément x est symétrisable pour T, il faut partir de la relation x Ty = e pour en déduire
la valeur de y qui convient. Attention a vérifier aussi y Tx = e si T n’est pas commutative !

Exemple 9. On reprend I'Exemple 2, avec E = ] —1,1 [ et 'application *. Montrer que tout élément de E est
symétrisable pour *.
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2 Groupes

2.1 Définition et propriétés générales

Définition 19.7 - Groupe

Gl. Testunel.Cd. sUr G, CAA : ... ..o.inii e e e e

G2. T estassociative, cad :

G3. G posséde un élément neutre (pour 1), cad :

G4. Tout élément a € G est symétrisable (pour T), cad:

Q Bien vérifier que I'élément neutre ¢, tout comme I'élément symétrique de x appartiennent bien a G !

Groupes usuels :

o (Z,+), (Q,+), (R,+) et (C,+) sont des groupes commutatifs. Mais (N, +) n’est pas un groupe car, par
exemple, 3 n’est pas symétrisable pour + dans N.

e (Q%, %), (R*, x), (R, x) et (C*, x) sont des groupes commutatifs. Mais (N*, x) et (Z*, x) ne sont pas
des groupe car (par exemple) 2 n’est pas symétrisable pour x : aucun élément y de N* ou de Z* ne vérifie
2y =1.

o (KN, 4) et (K® +) sont des groupes (ou encore K* et KX avecA C NetX C R)

e On verra d’autres groupes usuels pour les matrices, les polynémes, les fractions rationnelles...

Remarque. Pour les groupes usuels ci-dessus, par abus de langage, on sous-entend parfois laloi T et on dira

simplement que G est un groupe. Par exemple on parlera du groupe Z ou encore du groupe R* pour désigner
(Z,+) et (R*, x) respectivement. On emploiera parfois cet abus pour des groupes non usuels également.

Exemple 10. o (N, x),(Z,x),(Q,x), (R, x) et (C, x) ne sont pas des groupes car :

o On reprend I'Exemple 2, avec E = ] —1,1 [ et 'application *. Alors (E, x) est un groupe commutatif (cf
exemples précédents).

| Théoreme19.8 |

Soit (G, T) un groupe. Alors I'’élément neutre de G est unique.

De plus, tout élément x de G admet un unique symétrique : on 'appelera donc *le* symétrique de x.
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Démonstration. On a déja vu que I’élément neutre, s'il existe, est unique.

O

Remarque. Un groupe G est toujours non vide, car G possede un élément neutre. G peut ne contenir que son
élément neutre. Par exemple {0} est un groupe pour +. Si un groupe est réduit a son élément neutre, on dira

qu’il s’agit d'un groupe trivial.

2.2 Notations additive et multiplicative

La loi d'un groupe peut étre notée T ou *, mais bien souvent on emploie les notations + et x, car ces deux lois
sont associées a des notations usuelles pour I'élément neutre et I’élément symétrique, qui permettront de mener
des calculs de maniere similaire a ce qu’on fait avec des nombres réels ou complexes.

Notation (Lois x et -, notation xy). Soitx ety deux éléments d’'un groupe (G, x ). On préferera souvent noter xy
plutdt que x X y. De méme, on emploie parfois une loi “point”, qu’on note “-” et a nouveau on préfére écrire xy
plut6t que x - y.

Notations et régles de calcul (notations additives et multiplicatives)

Soit a€ E et m,n € Z. Notation additive : loi + Notation multiplicative : loi - ou X
Elément neutre Noté 0 ou Og Noté 1, 1z oue
L. Opposé : noté —a Inverse : noté a~ '
Symétrique de a ~Ppose a1
a+(—a)=(—a)+a=0g aa” =a a=lg
a+...+a sin>1 in >
= a---a sin>1
Itéré n-iéme de a n fols n fois
. ) na= < 0a=0g sin=0 a' = aO:IE sin=0
(a symétrisable sin < —1) _ 1 1
(—a)+...4+(—a) sin< -1 a ---a sin<-—lI
——
n fois n fois
Symétrique de l'itéré _ _ _
N —(na) =n(—a) = (~n)a (@) ' =(a")=a"
(a symétrisable)

Si a nest pas symétrisable, les lignes suivantes ne sont valides que pourm,n € N.

Opération sur l'itéré na+ma= (n+m)a a'd" =d"" =d"a"

Itéré de l'itéré n(ma) = (nm)a (@)"=d"™ = (a™)"

Toutes ces régles de calcul sont similaires aux réels, c’est ce qui fait I'attrait de ces notations. Prudence cependant,
toutes les opérations dans R ne sont pas permises ! Notamment I’associativité et la commutativité ne vont pas
de soi.
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Q En notation multiplicative, on n’a pas toujours ab = ba (la commutativité de - n’est pas automatique).

Par contre, la notation additive a + b n’est employée que pour une l.c.i. commutative (ce qui n’exclut
pas de devoir la vérifier si nécessaire).

Exemple 11 (Notation multiplicative et composition). On pose E = R¥. On munit I'ensemble E de lal.c.i. o
(composition), avec la notation muliplicative :

o

o

Plutot que d’écrire g o f, on écrira g f (cela ne désigne pasla fonction x — g(x) x f(x) ).
Son élément neutre est idg, mais on le notera 1. Onadonc 1gf = flg = f.

f est symétrisable pour o si et seulement s’il existe (une unique fonction) g € E telle que
fe=gf=1g (ie fog=gof=idg)

cela revient a dire que f est bijective et que g est I'application réciproque de f. On notera f~! I'application g,
etonaura ff ! = f~! f = 1. Cette notation coincide bien avec celle vue dans le chapitre des applications.

Pour tout n € N*¥, " désignera I'application fo fo---o f (cela ne désigne pasla fonction x — f(x)" ).

On a alors les régles de calcul £ f” = f**", ou encore (f")" = f™", etc.

2.3 Calcul dans un groupe

Dans cette partie, sauf indication contraire on utilisera la notation a’ pour noter le symétrique d’'un élément a.

| Théoréme 19.9 |

Soit (G, T) un groupe eta,b € G.Ona:

(d) =a et (aTb) =b'Td

En notation additive, cette propriété se réécrit :

En notation multiplicative, cette propriété se réécrit :

Démonstration.

O

8/24
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Définition 19.10 - Elément régulier

Soit T unel.ci.surE eta € E.
e On dit que a est régulier a gauche si : Vx,yeE ( aTx=aTy = x=y )

e On dit que a est régulier a droite si : Vx,y e E ( xTa=yTa = x=y )

e Ondit que a est régulier si a est régulier a gauche et a droite.

Ainsi, a est un élément régulier a gauche (resp. a droite) si on peut “simplifier” par a a gauche (resp. a droite).

Théoréme 19.11 |

Dans un groupe, tout élément est régulier.

Démonstration. Pour alléger la notation, on considére un groupe (G, -), i.e. une notation multiplicative. On note
e son élément neutre. Soit a € G. Montrons que a est régulier. Pour tous x,y € G,on a:

ax=ay = a '(ax) =a '(ay)
- (a_la)x: (a_la)y — ex—=ey — xX=Y

donc a est régulier a gauche. On montre de méme que a est régulier a droite. Donc a est régulier. O

Méthode - Opérations licites dans un groupe

Soit (G, -) un groupe (notation multiplicative). Soit x,y € G.

1. On peut multiplier une égalité a gauche par tout élémenta € G (ou para ') : ax=ay <= x=yYy
2. On peut multiplier une égalité a droite par tout élément a € G (ou par aly: Xa=ya <= x=yYy
3. On peut passer au symétrique dans une égalité : X=y <= x = y_1

Exemple 12. Soit (G, -) un groupe et a,b € G. Résoudre I'équation x 'a=ab d'inconnue x € G.

2.4 Sous-groupes

Définition 19.12
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Si H est stable par T, alors on peut définir une (co-)restrictiondelal.c.i. T : E X E — E en une application notée :

Ty HxH—>H
(x,y) = xTy
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Dans ce cas, T gy estune l.c.i. sur| H |et est appelée la loi induite (par T) sur H. Trés souvent, on note encore |
lal.ci. Ty bien qu’il y ait ambiguité. Par ailleurs, la notation Ty n’est pas officielle.

Lemme 19.13 |

Avec les notations ci-dessus :
e Si T est associative (resp. commutative), alors T g l'est aussi.
e Sie estun élément neutre de E, et que e € H, alors e est aussi un élément neutre pour T g.

e Soit x € H. Si x est symétrisable pour T, et que son symétrique x’ vérifie x' € H, alors x est aussi
symétrisable pour Tz (de symétrique x’).

| Définition 19.14 |

Soit (G, T) un groupe. Une partie H C G est dite un sous-groupe de G si H est une partie stable par T et
si (H, Tg) estun groupe, ol T g est la loi induite sur H.

Autrement dit, pour que H soit un sous-groupe de G, il faut que (H, T y) vérifie les propriétés G1. a G4. Cela
fait beaucoup a vérifier. En pratique, grace au Lemme 19.13 ci-dessus, on peut (et on doit) utiliser une des
caractérisations qui suivent :

Théoreme 19.15 - Caractérisation d’un sous-groupe (en 3 assertions)

Soit (G, -) un groupe d’élément neutre e. Une partie H C G est un sous-groupe si et seulement si :
1.
2. H eststable parlal.ci.-:

3. H est stable par passage au symétrique :

Si on utilise pour la loi de G la notation additive (loi +), les assertions 2 et 3 se réécrivent :

Démonstration. Soit H C G qui vérifie 1-2-3. Par 2, H est stable par  est élement neutre de H, d’ot1 G3.. Enfin, par G4. et le Lemme 19.13,
T donc T g est bien définie, d’'ou G1.. Comme T estassociative, Ty  on en déduit que tout élément x de H est symétrisable pour Tg.
I'est aussi par le Lemme 19.13, d’ol1 G2.. Par 1 et le Lemme 19.13, ¢ Ainsi, (H, T ) est bien un groupe. O

Remarque. On notera que le groupe G r’intervient pas dans les assertions 1-2-3 : il faut juste vérifier que H C G,
qui est une “condition zéro”.

Exemple 13. o 27 estun sous-groupe de Z.
o Nn'est pas un sous-groupe de Z car 1 € Nmais —1 ¢ N (assertion 3 non vérifiée).
o R* n’est pas un sous-groupe de R* car (—2) x (—2) ¢ R* (assertion 2 non vérifiée).
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| Méthode |

Pour montrer que H n’est pas un sous-groupe d'un groupe G, il suffit de montrer que H ne vérifie pas une
des trois assertions de la propriété 19.15, cf exemples ci-dessus.

On peut condenser les assertions 2 et 3 de la propriété 19.15 ci-dessus en une seule :

Théoréme 19.16 — Caractérisation d’'un sous-groupe (en 2 assertions)

et seulement si :
1.
2.

Soit (G, -) un groupe (notation multiplicative) d’élément neutre e. Une partie H C G est un sous-groupe si

Exemple 14. Soit G un groupe d’élément neutre e. Alors {e} et G sont des sous-groupes de G. {e} est appelé le

sous-groupe trivial de G.

Remarque. Pour les propriétés 19.15 et 19.16, la majorité des
auteurs prennent une condition 1 différente, a savoir 'assertion
“H #+ @”. En fait, les deux versions sont équivalentes, car on peut
montrer que :

{la ecH {1b H+o
=

2a Vx,yeH xy l'eH 2b Vx,ye H Xy leH

| Méthode |

(et idem pour la propriété 19.15). Le sens direct est évident. Pour
le sens réciproque, supposons 1b et 2b. Montrons 1a et 2a. Tout
d’abord, on a 2b = 2a donc il suffit de montrer 1a. Par 1b, on
a H # &, donc il existe un élément xy dans H. Alors, en prenant
(x,y) = (x0,x0), 'assertion 2b entraine x()xal € H,ouencoree € H.
D’oui 1a. Finalement, I’équivalence ci-dessus est vérifiée.

“usuel” (G, T), avec laméme loi T.

Pour montrer que (G, T ) est un groupe, il suffit souvent de montrer que G est un sous-groupe d'un groupe

Exemple 15. Montrer que (U, x) est un groupe.

Corollaire 19.17 |

Si H est un sous-groupe d’un groupe commutatif, alors H est aussi un groupe commutatif.

Démonstration. Cela découle du Lemme 19.13. O
Exemple 16. Comme (C*, x) est un groupe commutatif, il en va de méme pour (U, x).
G. Peltier 11/24
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2.5 Morphismes de groupes

Définition 19.18 - Morphisme de groupes

On peut également dire que f est un morphisme de (G, T) dans (G, L) : ceci permet de préciser quelles sont les
l.c.i. de G et de G’ pour lesquelles f est un morphisme de groupes. Il arrive parfois qu'on omette les lois T et L et
qu’on écrive : “ f est un morphisme de G dans G ”.

| Définition 19.19 |

Soit (G, T) et (G, 1) deux groupes. Soit f : G — G’ un morphisme de groupes. On dit que :

e f estunisomorphisme (de groupes) si f est bijective.

e f estun endomorphisme (de G) si (G, T) = (G, L), i.e. f est un morphisme de (G, T) dans (G, T).

e f estun automorphisme (de G) si f est un isomorphisme et un endomorphisme (de G).

Exemple 17. Montrer que les fonctions suivantes sont des morphismes de groupes. Sont-ce des isomorphismes ?
Des endomorphismes ? Des automorphismes ?

f(Z+) = (Z,+) g: (R, x) = (R,+)
n—2n x+—Inx



Théoréme 19.20 |

Soit G et G’ deux groupes d’éléments neutres respectifs e et ¢. Soit f : G — G’ un morphisme de groupes.
Avec la notation multiplicative :

1. fle)=¢
2.¥xeG  f(x Y =f ()"
3.VxeG  VneZ  f(xX')=f(x)"

Démonstration. On ne prouve que les deux premiéres assertions, la troisieme étant une récurrence immédiate.

Exemple 18. Comme 'applicationIn : (R%, x) — (R, +) est un morphisme de groupes, ona:

1. 2. 3.

2.6 Noyau et image d'un morphisme

Théoréme 19.21 |

Soit G et G’ deux groupes et f : G — G’ un morphisme de groupes.
e Si H est un sous-groupe de G, alors f(H) est un sous-groupe de G'.

e SiH’ est un sous-groupe de G', alors f ! (H) est un sous-groupe de G.

Pour rappel :

Démonstration.



Définition 19.22 - Noyau

Soit G, G’ deux groupes d’éléments neutres respectifs e, ¢’. Soit f : G — G’ un morphisme de groupes. On
appelle noyau de f, noté Kerf, 'ensemble

Kerf:={xeG|fx)=¢}=f"({})

Théoréme 19.23 |

Avec les mémes notations que la définition :
1. Kerf est un sous-groupe de G.

2. Kerf = {e} si et seulementsi f est injective.

Démonstration. Montrons la premiere assertion : {¢’} est un sous- injective. Soit x,y € G tels que f(x) = f(y). Alors:
groupe de G, donc £~ ({¢'}) = Kerf estun sous-groupe de G par
le Théoreme 19.21. Montrons maintenant la seconde assertion. f(x)f(y)*l —=¢

e Sens réciproque : supposons f injective. Comme f(e) = ¢/,
il est clair que e € Ker f. Montrons I'autre inclusion, a savoir

. . PPV N
Kerf C {e}. Soit x € Kerf. Alors f(x) = ¢' — f(e) et comme et comme f est un morphisme, on en déduit f(xy™ ') =e'.

- PR L) ? ,e - ingi vyl - —1_ oy

f estinjective, x = e. Ainsi, x € {e} et on a bien I'inclusion Ainsi,xy”" € Kerf = {e}. Donc, xy~ = ¢, ouencorex =y.
recherchée. D'oli Kerf = {e}. Donc (par arbitraire sur x,y), f est injective.

e Sens direct : supposons Kerf = {¢} et montrons que f est O

Exemple 19. Montrer que (277, +) est un groupe en utilisant le morphisme de groupes

f:(R,+)— (C*, x)

x> e

Lapplication f est-elle injective ?
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Définition 19.24 — Image

Soit G, G’ deux groupes d’éléments neutres respectifs e, ¢’. Soit f : G — G’ un morphisme de groupes. On
appelle image de f, noté Imf, I'ensemble

Imf:={f(x) | x € G} = f(G)

Théoréeme 19.25 |

Avec les mémes notations que la définition :
1. Imf est un sous-groupe de G'.

2. Imf = G’ si et seulement si f est surjectif.

Démonstration. Montrons la premiere assertion : G est un sous- La seconde assertion est tautologique : par définition, Imf = f(G)
groupe de G, donc f(G) est un sous-groupe de G’ par le Théo- et on a vu au chapitre sur les applications que f(G) = G’ si et seule-
reme 19.21. ment si f est surjective. O

Exemple 20. Montrer que (U, x) est un groupe en utilisant le morphisme de groupes

fi(R,+)—=(C*, x)

x> e

Est-ce que f est surjective ?

2.7 Groupe produit

Dans ce qui suit, on a choisi la notation g1, g» pour deux éléments d'un groupe G et i1, h, pour deux éléments
d'un groupe H. Ce ne sont pas des applications (sauf si G et/ou H contiennent des applications)
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Théoréeme 19.26 — Groupe produit

Soit (G, x) et (H, x) deux groupes. On peut définir une l.c.i. ® sur G x H, dite loi produit par :

V(g1,h), (g2,h2) € Gx H (g1,m) ® (g2,h2) = (8182, i)

(G x H,®) est un groupe, dit groupe produit de G et H.

e Son élément neutre est (eg, ey ), oll e et ey sont les éléments neutre de G et H respectivement.

Si (x,y) € G x H, alors, en notation multiplicative : (x,y) ™' = (x~1,y~1).

Enfin, si G et H sont abéliens, alors G x H 1’est aussi.

Attention, la notation ® est loin d’étre universelle pour désigner une loi produit : on peut aussi noter *, voire
méme X, comme les loisde G et H !

Démonstration. On va montrer les trois premieres assertions en e Montrons G4. On a
montrons que (G x H, ) est un groupe. Montrons G1., i.e. x est une
l.c.i. sur G x H. Soit (g1, 1) et (g2,h2) deux couples de G x H. On a Ly s (ny) = (1 Ty~ Ly) = (egren)

8178 €G
hiLlhy €H et de méme (x,y) * 'y = (eG,en). Ainsi, (x,y) est

(g1,h1)*(g2,)=(g1 Tg2, M Lhy) e GXxH  car {
bien symétrisable et (x,y) ' = (x "',y 1).

Ainsi, * est une l.c.i. sur G x H. On peut vérifier (mais c’est fasti- fin la dernié . i Tetl
dieux) que x est associative. Montrons que G x H vérifie G3. et e Montrons enfin la derniere assertion. Si T et L sont com-
G4. mutatives, alors

e Montrons G3. Soit (x,y) € G x H.On a
(81,h1)*(82,) = (81T 82, Lh2) = (82T g1, haLh1) = (82,h2) % (g1, h1)
(eg,em)*(x,y) = (eg Tx,eg Ly) = (x,y)

et de méme (x,y) * (eg,en) = (x,y). Ainsi, (eg,ep) est bien donc * est commutative.

élément neutre. O

Exemple 21. (R,+) et (R*, x) sont des groupes donc on peut munir I'ensemble £ = R x R* de la loi produit

(xay) ® (xlayl) = (x+x',yy')

Dans ce cas, 'élément neutre de E est .......... et le symétrique d’'un élément (x,y) de E est ...............

3 Anneaux

3.1 Anneau

Définition 19.27 — Monoide, hors programme

Soit M un ensemble. On dit que (M, T) est un monoide si :
M1. T estunel.c.i. sur M.
M2. T estassociative: Va,b,ceM  aT(bTc)=(aTh)Tc.
M3. M possede un élément neutre (pour T): deeM VYaeG ale=ela=a.

Autrement dit, un monoide vérifie les mémes propriétés qu'un groupe sauf la condition que chaque élément
doit étre symétrisable : ce n’est pas nécessaire pour étre un monoide.

Exemple 22. (Z,x), (Q, x), (R, x) et (C, x) sont des monoides.
Etant donné un ensemble Q quelconque, (Z(Q),N) et (F(Q),U) sont des monoides.
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Définition 19.28 — Anneau I_

Soit A un ensemble. On dit que (A, +, X ) est un anneau si :
Al. (A,+) est un groupe abélien.

A2. (A, x) est un monoide. (x estune l.c.i. associative, et A admet un élément neutre pour x)

A3. X est distributive par rapport a +, c’est-a-dire :

Si de plus laloi x est commutative, on dit que (A,+, X) est un anneau commutatif.

e L'élement neutre pour + est noté 04 et appelé élément nul.
e ['élément neutre pour X est noté 14 et appelé élément unité.

e Pour tout x € A, son symétrique par rapport a + est noté —x et est appelé 'opposé de x.

| Définition 19.29 |

Soit (A, +, X ) un anneau et a € A. On dit que a est inversible si a est symétrisable par rapport a x, cad :

1
1
1
1
1
dbeA ab=ba =1y :
Dans ce cas, un tel b € A qui vérifie ces égalités est unique. On le note a ! eton dit que c'est'inverse de a.

- 1

1

Ainsi, | sia estinversible |, alorsa™ aunsensetaa  =a a=14.

Q Dans un anneau, il n’est jamais garanti qu'un élément donné soit inversible !

Anneaux usuels :

o (Z,+,x), (Q,+,x), (R,+, x) et (C,+, x) sont des anneaux commutatifs.

- Dans Q,R, C tout élément non nul x est inversible et x ! = —.
x

— Dans Z seuls —1 et 1 sont inversibles et chacun est égal a son propre inverse.

° (RN ,+, x) est un anneau commutatif. ° (RR, +, X) est un anneau commutatif.
Ogy  estlasuite de terme général u,, =0 Ogr estlafonctionx+— 0
Ign  estlasuite de terme général u,, = 1 Igr estlafonctionx — 1.

Exemple 23. Déterminer une condition nécessaire et suffisante pour qu'une suite # de 'anneau R soit inversible.



3.2 Sous-anneau

On rappelle que la notion de sous-ensemble stable par l.c.i. et de loi induite a été vue a la définition 19.12.

| Définition 19.30 |

Soit (A, +, x) un anneau. Une partie B C A est dite un sous-anneau de A si B est stable par les l.c.i. + et
X, et que (B,+p, X ) est un anneau, oll +p, X g sont les lois induites par +, x sur B.

Comme pour les groupes, on fait souvent un abus de notation en notant + et x les lois induites +p et x . Pour
vérifier que (B, +, x) est un anneau, il faudrait donc vérifier les propriétés Al. a A3.. En pratique, on utilise la
caractérisation suivante :

| Théoreme19.31 |

Soit (A, +, x) un anneau. Une partie B C A est un sous-anneau de A si et seulement si :
1. 14€8B
2. Vx,yéeB x—yEB
3. Vx,yeB xy€eB

On notera que A n'intervient pas dans les assertions 1-2-3, et qu'il suffit de vérifier que B C A, qui est une
“condition zéro”.

Démonstration. On vérifie que les assertions Al. a A3. sont vraies 2. Montrons que (B, x) est un monoide.
rB. O .
pou e Par3, X estunel.ci.surB
1. Montrons que (B, +) est un groupe abélien. On va montrer e Par 1, B possede un élément neutre pour x.
que c’est un sous-groupe de (A, +). e Comme X est associative sur A et que B C A, on en
e Parles assertions 1 et 2, en prenantx =y = 14, 0ona déduit que x est associative sur B.
x—y=1ls—14 =04 € Bdonc B contient I'¢élément 3. 1I faut enfin montrer que, sur B, x est distributive sur +,

neutre pour la loi +.
e De plus, comme on a 2, on vérifie que (B,+) est un
sous-groupe de (A, +) donc un groupe (proposition

c’est-a-dire :

19.16). Vx,y,z€B  x(y+z)=xy+xz et (ytz)x=yx+zx
e Enfin, (B,+) est un sous-groupe du groupe abélien
(A,+), donc (B, +) est abélien. Or, on a en particulier x,y,z € A et comme A est un anneau,
Finalement (B,+) est un groupe abélien. les relations ci-dessus sont vérifiées. D’ou le résultat.

Exemple 24. o 7Z,D et Q sont des sous-anneaux de (R, +, x).
o Z,D, Q et R sont des sous-anneaux de (C,+, x).

o On note C 'ensemble des suites réelles convergentes. C est un sous-anneau de (RN, +, X).



o L'ensemble des fonctions polynémiales est un sous-anneau de (RR, +, X).
3.3 Calcul dans un anneau
Sur un anneau (4, 4, x ), on peut définir une l.c.i. — par®:
pourtousa,b €A, a—b:=a+(-b)

On dispose alors des regles de calcul usuelles : pour tous a,b,c € A,

e a0y =04a =04 (04 est absorbant pour x)

e —(ab) = (—a)b=a(-b)

o a(b—c)=ab—(ac) (distributivité de x sur —)
Démonstration.

O

Grace a ces formules, on peut écrire sans ambiguité “—ab” : c’est aussi bien —(ab), i.e. 'opposé de ab, que (—a)b,
i.e.'opposé de a multiplié par . On peut donc réécrire les deux dernieres formules :

—ab=(—a)b=a(-b) et a(b—c)=ab—ac

Théoreme 19.32 — Formules du binéme et a”" — ", version anneaux

Soit (A, +, X) un anneau. Alors pour tous a,b € Aetn € N,

ab=ba | = (a+b)"=Y (n) akp"*
i=o \K

etsin € N¥,

n—1 n—1
ab=ba | = da"—b"=(a—D) Z akpr1k = (Z akb”_l_k> (a—b)
k=0 k=0

A Ne pas oublier que a et b doivent commuter pour appliquer ces formules !

S om peut aussi définir la l.c.i. — sur un groupe (G, +).
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Exemple 25. Soit (A, +, x) un anneau. Soita € A etn € N tels que ¢" = 0. Montrer que 14 — a est inversible et
calculer son inverse.

Remarque (Cas 14 = 04). La définition d'un anneau (A, +, x ) n’exclut pas la possibilité que 14 = 04. Dans ce
cas, pour tout x € A,

x:)ClA:on:OA

si bien que tout élément de A est égal a 04. Autrement dit, A = {04 }. On dit alors que A est un anneau trivial.

3.4 Morphismes d’anneaux

Définition 19.33 — Morphisme d’anneaux

Soit (A,+,x) et (A',®,®) deux anneaux. Une application f : A — A’ est appelée un morphisme
(d’anneaux) si
Va,bcA  fla+b)=f(a)® f(b)

Va,beA  flaxb)= f(a)® f(b)

On dit aussi que f est un morphisme de A dans A, pour préciser les anneaux de départ et d’arrivée. On omettra
en général les lois 4, X et B, ®.

| Définition 19.34 |

Soit (A, +, x) et (A’, ®,®) deux anneaux. Soit f : A — A’ un morphisme d’anneaux. On dit que :
e f estunisomorphisme (d’anneaux) si f est bijective.

e f estun endomorphisme (de A) si (A, +, x) = (A',®,®).

e f estun automorphisme (de A). si f est un isomorphisme et un endormorphisme (de A).

Exemple 26. o Lapplication z — Z est un automorphisme de 'anneau (C, +, x).

o Lapplication (u,) — limu, est un morphisme de ’anneau des suites convergentes dans R.
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4 Inversibles d'un anneau, corps

4.1 Eléments inversibles d’un anneau

| Théoréme 19.35 |

Soit A un anneau et soit a et b deux éléments inversibles de a.

e Le produit ab est aussi inversible et (ab) ' = b~ 'a"".

e a !estinversibleet (¢~ !)"! = a.

Démonstration. La preuve est tres similaire a celle du Théoreme 19.9. O

Comme déja dit, rien ne permet de dire qu'un élément quelconque d'un anneau A est inversible ou non. On
peut mentionner que 14 est inversible et est son propre inverse puisque 1414 = 14. En revanche, dés que A est
non trivial, on peut montrer que 04 n’est pas inversible car il n’existe aucun b € A tel que 040 = 14.

Notation. Soit (A, +, X) un anneau. Lensemble des éléments inversibles de A sera noté Inv(A) dans ce cours.
Cette notation n’est pas officielle. On trouve aussi la notation A™....

| Théoréme 19.36 |

Soit (A, +, x) un anneau. Alors (Inv(A), X ) est un groupe, appelé groupe des inversibles de A.

Démonstration. On vérifie les propriétés G1. a G4.. On s’appuie sur le Lemme 19.13 et le Théoréme 19.35 :

Exemple 27. Le groupe des inversibles de (Z,+, x) est {—1, 1}, qui est bien un groupe pour x.
Les groupes des inversibles des anneaux Q, R, C sont Q*,R*, C* respectivement.

1
Le groupe des inversibles de R" est I'ensemble des suites (u,) qui ne s'annulent pas : on a alors (u,) ' = () .
Up
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4.2 Calcul dans un anneau (inversibilité)

Théoréme 19.37 |

Soit A un anneau. Si| a € Inv(A) |, alors a est régulier :

Vx,y €A ax=ay = x=yYy et xa=ya = x=y

Il est essentiel que a soit inversible. Contre-exemple : si @ = 04, on a toujours 04x = 04y mais pas nécessairement
X =Y.

| Définition 19.38 — Diviseur de zéro l

Soit (A, +, x) un anneau. On appelle diviseur de zéro tout élémenta € A\ {04} tel que

Définition 19.39 — Anneau intégre

Soit (A, +, x) un anneau. On dit que A est un anneau intégre si :

I1. A# {04}
I2. A est commutatif.

I3. Va,be A (ab=04s = a=04 ou b=04 )

La condition I3. est équivalente a dire que A ne contient pas de diviseur de zéro.

Exemple 28. Les anneaux Z, QQ, R et C sont integres.

Dans un anneau intégre, “si un produit est nul, (au moins) un des facteurs du produit est nul”. Cela est vrai sur Z,
Q, R et C, mais ce n’est pas automatique ! Cf les exemples ci-dessous.

Exemple 29. Montrons que (R?, 4, x ) n’est pas integre. On a (0,1) x (1,0) = (0,0) alors que (0,1) et (1,0) ne
sont pas égaux a Ogz, qui vaut (0,0). Ainsi (0,1) et (1,0) sont des diviseurs de zéro. D’oi1 (R?,+, x) n’est pas
integre.

R ) ‘s . ) 0 x<0 ) x| x<0
Exemple 30. (R™,+, x) n’est pas integre. En effet, si on pose f:x+— x| x>0 et gix—
x| x>

alors fg = O mais f # 0 et g # 0. Ainsi, f et g sont des diviseurs de zéro.

| Théoréme 19.40 |

Dans un anneau integre A, tout élément différent de 04 est régulier.

Démonstration.



4.3 Corps

Définition 19.41 |

Un anneau (K, +, x) est appelé un corps si:
K1. K # {0k}
K2. K est commutatif.
K3. Tout élément non nul de K est inversible.

On note en général K* := K\ {Ox } le groupe des inversibles de K.

Exemple 31. Q, R et C sont des corps. Z n’est pas un corps car, par exemple, 2 est un élément non nul de Z qui
n’est pas inversible.

Théoréme 19.42 |

Tout corps est un anneau intégre. La réciproque est fausse (contre-exemple : Z).

Démonstration. Soit K un corps. Il suffit de vérifier la condition I3. de la Définition 19.39. Soit a,b € K tels que
ab = Og. Montrons que a = Og ou b = Ox. Si a = O, alors 'assertion est vérifiée. Si a # O, alors a est inversible,
donc

alab = a_IOK =0k

si bien que b = Og. D’ot1 le résultat. O

Définition 19.43 — Sous-corps, hors programme ?

Soit (K, +, x) un corps. Une partie L. C K est un sous-corps de K si L est stable par les l.c.i. 4 et x, et que
(L,®,®) est un corps, ot &, ® sont les lois induites par +, x sur L.

A nouveau, on commet I’abus de notation en confondant les lois induites &, ® avec les lois +, x.
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Théoréeme 19.44 — Hors programme ?

Soit (K, +, X ) un corps. Une partie L C K est un sous-corps de K si et seulement si :
1. L#{Ox}etL# @  (oude maniére équivalente L\ {Ox } # @)
2. Vx,yelL x—yel
3. Vx,yeLxL* xylelL

Exemple 32. QQ est un sous-corps de R, qui est lui-méme un sous-corps de C.

5 Meéthodes pour les exercices

| Méthode |

Pour montrer qu'un ensemble E est un groupe, on peut :

1. Montrer que c’est le sous-groupe d’'un groupe usuel.

. Vérifier si E n’est pas égal a Inv(A) pour un anneau usuel A (il faut que la loi de E soit x).

. Montrer que E = f(H) ou E = f~'(H') avec H et H' des sous-groupes de G et G'.

. Si E s’écrit comme un produit de deux groupes, vérifier si E est le groupe produit de ces deux
groupes.

2
3. Montrer que E = Im f ou E = Ker f avec f : G — G’ un morphisme de groupes.
4
5

6. En dernier recours, vérifier G1. a G4..

| Méthode |

Pour montrer qu'un ensemble E est un anneau, on peut :

1. Montrer que c’est le sous-anneau d’un anneau usuel.

2. En dernier recours, vérifier Al. a A3..
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