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Hypothèse

Dans tout ce chapitre, E est un ensemble, et K désigne R ou C.

1 Vocabulaire introductif

1.1 Loi de composition interne

Définition 19.1 – Loi de composition interne

On appelle loi de composition interne sur E (en abrégé l.c.i.) toute application de E ×E dans E.
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Étant donné une l.c.i. notée ⊤ : E ×E → E, on notera x⊤y au lieu de ⊤(x,y).

Méthode

Pour montrer qu’une application ⊤ est une l.c.i. sur E, il faut montrer que cette application est bien
définie : que pour tous x,y ∈ E , l’expression x⊤y a un sens et appartient bien à E.

Exemple 1. ◦ Les lois +, − et × sont des l.c.i. sur Z car ces applications sont bien définies de Z×Z dans Z.
Idem pour Q, R et C.

◦ La loi − n’est pas une l.c.i. sur N, car cette application n’est pas bien définie de N×N dans N : par exemple
2−3 /∈ N.

◦ La loi / (division) n’est pas une l.c.i. sur R car, par exemple, 2/0 n’a pas de sens. Par contre la loi / est une
l.c.i. sur R∗

+ .

Exemple 2. On pose E =
]
−1,1

[
et on définit l’application ∗ par :

∗ : E ×E → E

(x,y) 7→ x+ y
1+ xy

Montrer que ∗ est bien définie, donc que ∗ est une l.c.i. sur E.

Soit x,y ∈ E. Tout d’abord, montrons que x∗ y a bien un sens. On a |x|< 1 et |y|< 1
donc |xy|< 1, de sorte que 1+xy> 0. Ainsi, x∗y a bien un sens. Maintenant, montrons
que x∗ y ∈ E :

x∗ y ∈ E

⇐⇒
∣∣∣∣ x+ y
1+ xy

∣∣∣∣< 1

⇐⇒
(

x+ y
1+ xy

)2

< 12 car x 7→ x2 est strictement croissante sur R∗
+

⇐⇒ (x+ y)2 < (1+ xy)2

⇐⇒ x2 + y2 +2xy < 1+2xy+ x2y2

⇐⇒ 0 < 1− x2 − y2 + x2y2

⇐⇒ 0 < (1− x2)(1− y2)

Or, comme x,y ∈
]
−1,1

[
, on a x2 < 1 et y2 < 1. On en déduit que (1−x2)(1−y2)> 0.

D’où x∗ y ∈ E . Ainsi, ∗ est une l.c.i. sur E.

1.2 Commutativité, associativité

Définition 19.2 – Commutativité, associativité

Une l.c.i. ⊤ sur un ensemble E est dite :

• commutative si ∀x,y ∈ E x⊤y = y⊤x

• associative si ∀x,y,z ∈ E (x⊤y)⊤z = x⊤(y⊤z)
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Exemple 3. ◦ Les l.c.i. + et × sont commutatives et associatives sur N, Z, Q, R et C.

◦ Barrer ce qui ne convient pas : la l.c.i. − sur Z est / n’est pas commutative et est / n’est pas associa-
tive. Idem pour Q, R et C.

◦ Pour tout ensemble Ω, la réunion ∪ et l’intersection ∩ sont des l.c.i. commutatives et associatives sur
l’ensemble E = P(Ω).

Exemple 4. On reprend l’Exemple 2, avec E =
]
−1,1

[
et l’application ∗. Montrer que ∗ est commutative.

Soit x,y ∈ E . On a

x∗ y =
x+ y

1+ xy
=

y+ x
1+ yx

= y∗ x

donc ∗ est bien commutative.Vérifier brièvement que l’application ∗ est associative.

Soit x,y,z ∈ E. Il faudrait montrer que x∗ (y∗ z) = (x∗ y)∗ z. Or,

x∗ (y∗ z) = x∗
(

y+ z
1+ yz

)
=

x+ y+z
1+yz

1+ x
(

y+z
1+yz

) =

x+y+z+xyz
1+yz

1+yz+xy+xz
1+yz

=
x+ y+ z+ xyz
1+ yz+ xy+ xz

On montrerait de même que (x∗y)∗z =
(

x+ y
1+ xy

)
∗z =

x+ y+ z+ xyz
1+ yz+ xy+ xz

. L’application

∗ est donc associative.
Remarque (Associativité et réécriture d’expressions). Si ⊤ est une l.c.i. associative sur E, alors on peut écrire
sans ambiguité x⊤y⊤z sans préciser les parenthèses. On peut de même écrire x1⊤x2⊤ . . .⊤xn sans ambiguité.

Théorème 19.3

Soit X un ensemble. On considère XX l’ensemble des applications de X dans X . Alors :

• la composition ◦ est une l.c.i. sur XX .

• ◦ est associative.

• ◦ est non commutative (sauf si X est vide ou un singleton).

Ainsi, pour toutes applications f ,g,h ∈ XX , on peut écrire f ◦g◦h sans ambiguité 1.

Définition 19.4

Deux éléments x et y de E commutent (pour ⊤) si x⊤y = y⊤x.

Bien entendu, si ⊤ est commutative, alors tous les éléments de E commutent deux à deux.

Exemple 5. Soit f et g les fonctions de CC définies par f (z) = z2 et g(z) = z. Montrer que f et g commutent.

Montrons que f ◦g = g◦ f . Pour tout z ∈ C, on a

( f ◦g)(z) = z2 et (g◦ f )(z) = z2 = z2

Par arbitraire sur z, f ◦g = g◦ f , donc f et g commutent.

1. Avec E
f−→ F

g−→ G h−→ H, on a encore (h◦g)◦ f = h◦ (g◦ f ), si bien qu’on peut écrire h◦g◦ f sans ambiguité. On dit encore dans ce
cadre que ◦ est associative, mais c’est un abus car ◦ ne représente pas une l.c.i. : pour g◦ f , on dénote ◦ l’application de GF ×FE dans
GE , tandis que pour h◦g, on dénote ◦ l’application de HG ×GF dans HF .
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1.3 Élément neutre

Définition 19.5 – Élément neutre

On suppose que ⊤ est une l.c.i. sur E. On dit que e ∈ E est l’élément neutre (pour ⊤) si

∀x ∈ E

{
x⊤e = x
e⊤x = x

Lorsqu’un tel élément neutre existe, il est unique.

Il faut bien vérifier que x⊤e = x ET que e⊤x = x, et ce pour tout x ∈ E. Cependant, si la loi ⊤ est
commutative, il est suffisant de vérifier que x⊤e = x.

Démonstration. Démontrons l’unicité. Soit e1 et e2 deux éléments neutres de ⊤.{
e1⊤e2 = e1 car e2 est élément neutre

e1⊤e2 = e2 car e1 est élément neutre

Finalement, e1 = e2.

Exemple 6.

◦ 0 est l’élément neutre de + sur N, Z, Q, R et C. En effet, pour tout x appartenant à un de ces ensembles, on
a

x+0 = 0+ x = x

◦ 1 est l’élément neutre de × sur N, Z, Q, R et C. En effet, pour tout x appartenant à un de ces ensembles, on
a

x×1 = 1× x = x

◦ Sur Z,Q,R,C, la l.c.i. − n’admet pas d’élément neutre.

◦ Soit X un ensemble. XX muni de la loi ◦ admet pour élément neutre .........

◦ Soit Ω un ensemble. P(Ω) muni de la loi ∪ admet pour élément neutre .........

◦ Soit Ω un ensemble. P(Ω) muni de la loi ∩ admet pour élément neutre .........

Méthode

Pour montrer qu’une loi ⊤ admet un élément neutre, il faut partir de la relation x⊤e = x pour en déduire
la valeur de e qui convient. Attention à vérifier aussi e⊤x = x si ⊤ n’est pas commutative !

Exemple 7. On reprend l’Exemple 2, avec E =
]
− 1,1

[
et l’application ∗. Montrer que ∗ admet un élément

neutre, qu’on notera e.

On cherche e ∈
]
−1,1

[
tel que pour tout x ∈ E, on a x∗ e =

x+ e
1+ xe

= x.

On pose e = 0. On a bien e ∈
]
−1,1

[
et x∗ e =

x+0
1+0

= x. Comme ∗ est commutative,

on a aussi e∗ x = x. Donc 0 est bien l’élément neutre de ∗.
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1.4 Élément symétrisable

Définition 19.6 – Élément symétrisable

Soit ⊤ une l.c.i. sur E et e ∈ E un élément neutre pour ⊤. On dit qu’un élément x de E est symétrisable
(pour ⊤) si

∃y ∈ E

{
x⊤y = e
y⊤x = e

Tout élément y ∈ E qui vérifie les deux égalités ci-dessus est appelé un symétrique de x (pour ⊤).

Il faut bien vérifier que x⊤y = e ET que y⊤x = e. Cependant, si la loi ⊤ est commutative, il est suffisant
de vérifier que x⊤y = e. Bien entendu, la valeur de y dépendra de x.

Remarque. Un même élément x peut a priori avoir plusieurs symétriques. Néanmoins, très souvent, ce symé-
trique est unique, et on le note en général x′, ou −x, ou encore x−1 (selon la loi ou la notation imposée par
l’énoncé, cf section 2.2).

Exemple 8. ◦ Pour la l.c.i. + dans Z, Q, R ou C, l’élément neutre est 0. De plus, tout élément x est symétri-
sable, et son symétrique est y =−x.

◦ Pour la l.c.i. + dans N, seul l’élément 0 est symétrisable : son propre symétrique est lui-même.

◦ Pour la l.c.i. × dans Q, R ou C, l’élément neutre est 1. De plus, tout élément non nul x est symétrisable, et
son symétrique est y = x−1.

◦ Pour la l.c.i. × dans Z, seuls les éléments 1 et −1 sont symétrisables : ils sont leur propre symétrique.

Méthode

Pour montrer qu’un élément x est symétrisable pour ⊤, il faut partir de la relation x⊤y = e pour en déduire
la valeur de y qui convient. Attention à vérifier aussi y⊤x = e si ⊤ n’est pas commutative !

Exemple 9. On reprend l’Exemple 2, avec E =
]
−1,1

[
et l’application ∗. Montrer que tout élément de E est

symétrisable pour ∗.

L’élément neutre est e = 0. Soit x ∈ E. On cherche y ∈ E tel que x∗ y =
x+ y
1+ xy

= 0.

On pose y =−x ∈ E . On a bien x∗ y =
x+(−x)

1− x2 = 0. Comme ∗ est commutative, on a

aussi y∗ x = 0. Donc y =−x est bien le symétrique de x.
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2 Groupes

2.1 Définition et propriétés générales

Définition 19.7 – Groupe

Soit G un ensemble. On dit que (G,⊤) est un groupe si :

G1. ⊤ est une l.c.i. sur G, càd : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G2. ⊤ est associative, càd :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G3. G possède un élément neutre (pour ⊤), càd :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G4. Tout élément a ∈ G est symétrisable (pour ⊤), càd :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Si de plus, ⊤ est commutative, on dit que (G,⊤) est un groupe commutatif (ou encore un groupe abélien).

Bien vérifier que l’élément neutre e, tout comme l’élément symétrique de x appartiennent bien à G !

Groupes usuels :

• (Z,+), (Q,+), (R,+) et (C,+) sont des groupes commutatifs. Mais (N,+) n’est pas un groupe car, par
exemple, 3 n’est pas symétrisable pour + dans N.

• (Q∗,×), (R∗,×), (R∗
+,×) et (C∗,×) sont des groupes commutatifs. Mais (N∗,×) et (Z∗,×) ne sont pas

des groupe car (par exemple) 2 n’est pas symétrisable pour × : aucun élément y de N∗ ou de Z∗ ne vérifie
2y = 1.

• (KN,+) et (KR,+) sont des groupes (ou encore KA et KX avec A ⊂ N et X ⊂ R)

• On verra d’autres groupes usuels pour les matrices, les polynômes, les fractions rationnelles...

Remarque. Pour les groupes usuels ci-dessus, par abus de langage, on sous-entend parfois la loi ⊤ et on dira
simplement que G est un groupe. Par exemple on parlera du groupe Z ou encore du groupe R∗ pour désigner
(Z,+) et (R∗,×) respectivement. On emploiera parfois cet abus pour des groupes non usuels également.

Exemple 10. ◦ (N,×), (Z,×), (Q,×), (R,×) et (C,×) ne sont pas des groupes car :

0 n’est pas symétrisable pour ×. En effet, si 0 admettait un symétrique noté y
(avec y dans N, Z, Q, R ou C), on aurait 0× y = y×0 = 1, ce qui est absurde.

◦ On reprend l’Exemple 2, avec E =
]
− 1,1

[
et l’application ∗. Alors (E,∗) est un groupe commutatif (cf

exemples précédents).

Théorème 19.8

Soit (G,⊤) un groupe. Alors l’élément neutre de G est unique.

De plus, tout élément x de G admet un unique symétrique : on l’appelera donc *le* symétrique de x.
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Démonstration. On a déjà vu que l’élément neutre, s’il existe, est unique. Montrons la deuxième asser-
tion. Soit x ∈ G et soit y1,y2 ∈ G deux symétriques de x. Ainsi,

x⊤y1 = y1⊤x = e x⊤y2 = y2⊤x = e

Alors, par associativité,

y2 = y2⊤e = y2⊤(x⊤y1) = (y2⊤x)⊤y1 = e⊤y1 = y1

Ainsi, y1 = y2 : il y a bien unicité du symétrique.

Remarque. Un groupe G est toujours non vide, car G possède un élément neutre. G peut ne contenir que son
élément neutre. Par exemple {0} est un groupe pour +. Si un groupe est réduit à son élément neutre, on dira
qu’il s’agit d’un groupe trivial.

2.2 Notations additive et multiplicative

La loi d’un groupe peut être notée ⊤ ou ∗, mais bien souvent on emploie les notations + et ×, car ces deux lois
sont associées à des notations usuelles pour l’élément neutre et l’élément symétrique, qui permettront de mener
des calculs de manière similaire à ce qu’on fait avec des nombres réels ou complexes.

Notation (Lois × et ·, notation xy). Soit x et y deux éléments d’un groupe (G,×). On préfèrera souvent noter xy
plutôt que x× y. De même, on emploie parfois une loi “point”, qu’on note “·” et à nouveau on préfère écrire xy
plutôt que x · y.

Notations et règles de calcul (notations additives et multiplicatives)

Soit a ∈ E et m,n ∈ Z. Notation additive : loi + Notation multiplicative : loi · ou ×

Élément neutre Noté 0 ou 0E Noté 1, 1E ou e

Symétrique de a
Opposé : noté −a Inverse : noté a−1

a+(−a) = (−a)+a = 0E aa−1 = a−1a = 1E

Itéré n-ième de a
(a symétrisable si n ≤−1)

na =



a+ . . .+a︸ ︷︷ ︸
n fois

si n ≥ 1

0a = 0E si n = 0
(−a)+ . . .+(−a)︸ ︷︷ ︸

n fois

si n ≤−1
an =


a · · ·a︸ ︷︷ ︸
n fois

si n ≥ 1

a0 = 1E si n = 0
a−1 · · ·a−1︸ ︷︷ ︸

n fois

si n ≤−1

Symétrique de l’itéré
(a symétrisable)

−(na) = n(−a) = (−n)a (an)−1 = (a−1)n = a−n

Si a n’est pas symétrisable, les lignes suivantes ne sont valides que pour m,n ∈ N.

Opération sur l’itéré na+ma = (n+m)a anam = an+m = anam

Itéré de l’itéré n(ma) = (nm)a (an)m = anm = (am)n

Toutes ces règles de calcul sont similaires aux réels, c’est ce qui fait l’attrait de ces notations. Prudence cependant,
toutes les opérations dans R ne sont pas permises ! Notamment l’associativité et la commutativité ne vont pas
de soi.
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En notation multiplicative, on n’a pas toujours ab = ba (la commutativité de · n’est pas automatique).
Par contre, la notation additive a+b n’est employée que pour une l.c.i. commutative (ce qui n’exclut
pas de devoir la vérifier si nécessaire).

Exemple 11 (Notation multiplicative et composition). On pose E = RR. On munit l’ensemble E de la l.c.i. ◦
(composition), avec la notation muliplicative :

◦ Plutôt que d’écrire g◦ f , on écrira g f (cela ne désigne pas la fonction x 7→ g(x)× f (x) !).

◦ Son élément neutre est idE , mais on le notera 1E . On a donc 1E f = f 1E = f .

◦ f est symétrisable pour ◦ si et seulement s’il existe (une unique fonction) g ∈ E telle que

f g = g f = 1E (i.e. f ◦g = g◦ f = idE)

cela revient à dire que f est bijective et que g est l’application réciproque de f . On notera f−1 l’application g,
et on aura f f−1 = f−1 f = 1E . Cette notation coïncide bien avec celle vue dans le chapitre des applications.

◦ Pour tout n ∈ N∗, f n désignera l’application f ◦ f ◦ · · · ◦ f (cela ne désigne pas la fonction x 7→ f (x)n !).

◦ On a alors les règles de calcul f n f m = f n+m, ou encore ( f n)m = f nm, etc.

2.3 Calcul dans un groupe

Dans cette partie, sauf indication contraire on utilisera la notation a′ pour noter le symétrique d’un élément a.

Théorème 19.9

Soit (G,⊤) un groupe et a,b ∈ G. On a :

(a′)′ = a et (a⊤b)′ = b′⊤a′

En notation additive, cette propriété se réécrit :−(−a) = a et −(a+b) = (−b)+(−a)

En notation multiplicative, cette propriété se réécrit : (a−1)−1 = a et (ab)−1 = b−1a−1

Démonstration. On note e l’élément neutre de ⊤. Comme a′ est le symétrique de a, on a
a⊤a′ = a′⊤a = e : ceci montre également que a′ est symétrisable et que le symétrique
de a′ est a. Ainsi (a′)′ = a. Pour la seconde identité :(

b′⊤a′
)
⊤(a⊤b) = b′⊤(a′⊤a)⊤b car ⊤ est associative

= b′⊤e⊤b car a′⊤a = e
= b′⊤b car e est élément neutre

= e car b′⊤b = e

et de même on montre que (a⊤b)⊤
(
b′⊤a′

)
= e. Ainsi, a⊤b est symétrisable et admet

pour symétrique b′⊤a′. D’où (a⊤b)′ = b′⊤a′.
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Définition 19.10 – Élément régulier

Soit ⊤ une l.c.i. sur E et a ∈ E.

• On dit que a est régulier à gauche si : ∀x,y ∈ E ( a⊤x = a⊤y =⇒ x = y )

• On dit que a est régulier à droite si : ∀x,y ∈ E ( x⊤a = y⊤a =⇒ x = y )

• On dit que a est régulier si a est régulier à gauche et à droite.

Ainsi, a est un élément régulier à gauche (resp. à droite) si on peut “simplifier” par a à gauche (resp. à droite).

Théorème 19.11

Dans un groupe, tout élément est régulier.

Démonstration. Pour alléger la notation, on considère un groupe (G, ·), i.e. une notation multiplicative. On note
e son élément neutre. Soit a ∈ G. Montrons que a est régulier. Pour tous x,y ∈ G, on a :

ax = ay =⇒ a−1(ax) = a−1(ay)

=⇒ (a−1a)x = (a−1a)y =⇒ ex = ey =⇒ x = y

donc a est régulier à gauche. On montre de même que a est régulier à droite. Donc a est régulier.

Méthode – Opérations licites dans un groupe

Soit (G, ·) un groupe (notation multiplicative). Soit x,y ∈ G.

1. On peut multiplier une égalité à gauche par tout élément a∈G (ou par a−1) : ax = ay ⇐⇒ x = y

2. On peut multiplier une égalité à droite par tout élément a ∈ G (ou par a−1) : xa = ya ⇐⇒ x = y

3. On peut passer au symétrique dans une égalité : x = y ⇐⇒ x−1 = y−1

Exemple 12. Soit (G, ·) un groupe et a,b ∈ G. Résoudre l’équation x−1a = ab d’inconnue x ∈ G.

On ne peut pas simplifier par a ! Mais on peut écrire

x−1a = ab ⇐⇒ x−1 = aba−1

⇐⇒ x = (aba−1)−1 = ab−1a−1

Ainsi, S = {ab−1a−1}.

2.4 Sous-groupes

Définition 19.12

Soit ⊤ une l.c.i. sur E . Une partie H ⊂ E est dite stable (par ⊤) si : ∀x,y ∈ H x⊤y ∈ H

Si H est stable par ⊤, alors on peut définir une (co-)restriction de la l.c.i. ⊤ : E ×E → E en une application notée :

⊤H : H ×H → H

(x,y) 7→ x⊤y
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Dans ce cas, ⊤H est une l.c.i. sur H et est appelée la loi induite (par ⊤) sur H. Très souvent, on note encore ⊤
la l.c.i. ⊤H bien qu’il y ait ambiguité. Par ailleurs, la notation ⊤H n’est pas officielle.

Lemme 19.13

Avec les notations ci-dessus :

• Si ⊤ est associative (resp. commutative), alors ⊤H l’est aussi.

• Si e est un élément neutre de E, et que e ∈ H, alors e est aussi un élément neutre pour ⊤H .

• Soit x ∈ H. Si x est symétrisable pour ⊤, et que son symétrique x′ vérifie x′ ∈ H, alors x est aussi
symétrisable pour ⊤H (de symétrique x′).

Définition 19.14

Soit (G,⊤) un groupe. Une partie H ⊂ G est dite un sous-groupe de G si H est une partie stable par ⊤ et
si (H,⊤H) est un groupe, où ⊤H est la loi induite sur H.

Autrement dit, pour que H soit un sous-groupe de G, il faut que (H,⊤H) vérifie les propriétés G1. à G4. Cela
fait beaucoup à vérifier. En pratique, grâce au Lemme 19.13 ci-dessus, on peut (et on doit) utiliser une des
caractérisations qui suivent :

Théorème 19.15 – Caractérisation d’un sous-groupe (en 3 assertions)

Soit (G, ·) un groupe d’élément neutre e. Une partie H ⊂ G est un sous-groupe si et seulement si :

1. e ∈ H
2. H est stable par la l.c.i. · : ∀x,y ∈ H xy ∈ H
3. H est stable par passage au symétrique : ∀x ∈ H x−1 ∈ H

Si on utilise pour la loi de G la notation additive (loi +), les assertions 2 et 3 se réécrivent :

2 ............................................

3 ............................................

Démonstration. Soit H ⊂G qui vérifie 1–2–3. Par 2, H est stable par
⊤ donc ⊤H est bien définie, d’où G1.. Comme ⊤ est associative, ⊤H
l’est aussi par le Lemme 19.13, d’où G2.. Par 1 et le Lemme 19.13, e

est élement neutre de H, d’où G3.. Enfin, par G4. et le Lemme 19.13,
on en déduit que tout élément x de H est symétrisable pour ⊤H .
Ainsi, (H,⊤H) est bien un groupe.

Remarque. On notera que le groupe G n’intervient pas dans les assertions 1–2–3 : il faut juste vérifier que H ⊂ G,
qui est une “condition zéro”.

Exemple 13. ◦ 2Z est un sous-groupe de Z.
En effet, 0 ∈ Z et pour tous x,y ∈ 2Z, on a évidemment x+ y ∈ 2Z et −x ∈ 2Z.
Donc 2Z est un sous-groupe de (Z,+).

◦ N n’est pas un sous-groupe de Z car 1 ∈ N mais −1 /∈ N (assertion 3 non vérifiée).

◦ R∗
− n’est pas un sous-groupe de R∗ car (−2)× (−2) /∈ R∗

− (assertion 2 non vérifiée).
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Méthode

Pour montrer que H n’est pas un sous-groupe d’un groupe G, il suffit de montrer que H ne vérifie pas une
des trois assertions de la propriété 19.15, cf exemples ci-dessus.

On peut condenser les assertions 2 et 3 de la propriété 19.15 ci-dessus en une seule :

Théorème 19.16 – Caractérisation d’un sous-groupe (en 2 assertions)

Soit (G, ·) un groupe (notation multiplicative) d’élément neutre e. Une partie H ⊂ G est un sous-groupe si
et seulement si :

1. e ∈ H
2. ∀x,y ∈ H xy−1 ∈ H (en notation additive : ∀x,y ∈ H x− y ∈ H).

Exemple 14. Soit G un groupe d’élément neutre e. Alors {e} et G sont des sous-groupes de G. {e} est appelé le
sous-groupe trivial de G.

Remarque. Pour les propriétés 19.15 et 19.16, la majorité des
auteurs prennent une condition 1 différente, à savoir l’assertion
“H ̸=∅”. En fait, les deux versions sont équivalentes, car on peut
montrer que :

{
1a e ∈ H
2a ∀x,y ∈ H xy−1 ∈ H

⇐⇒
{

1b H ̸=∅
2b ∀x,y ∈ H xy−1 ∈ H

(et idem pour la propriété 19.15). Le sens direct est évident. Pour
le sens réciproque, supposons 1b et 2b. Montrons 1a et 2a. Tout
d’abord, on a 2b =⇒ 2a donc il suffit de montrer 1a. Par 1b, on
a H ̸= ∅, donc il existe un élément x0 dans H. Alors, en prenant
(x,y) = (x0,x0), l’assertion 2b entraine x0x−1

0 ∈ H, ou encore e ∈ H.
D’où 1a. Finalement, l’équivalence ci-dessus est vérifiée.

Méthode

Pour montrer que (G,⊤) est un groupe, il suffit souvent de montrer que G est un sous-groupe d’un groupe
“usuel” (G′,⊤), avec la même loi ⊤.

Exemple 15. Montrer que (U,×) est un groupe.

On rappelle que U= {z ∈ C | |z|= 1}. Montrons que U est un sous-groupe de C∗. Il
est clair qu’on a U⊂ C∗ et 1 ∈ U. Soit z,z′ ∈ U. Montrons que z(z′)−1 ∈ U. On a∣∣∣z(z′)−1

∣∣∣= ∣∣∣∣ z
z′

∣∣∣∣= 1 car |z|= |z′|= 1

Donc z(z′)−1 ∈ U. Ainsi, U est un sous-groupe de (C∗,×) donc un groupe.

Corollaire 19.17

Si H est un sous-groupe d’un groupe commutatif, alors H est aussi un groupe commutatif.

Démonstration. Cela découle du Lemme 19.13.

Exemple 16. Comme (C∗,×) est un groupe commutatif, il en va de même pour (U,×).
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2.5 Morphismes de groupes

Définition 19.18 – Morphisme de groupes

Soit (G,⊤) et (G′,⊥) deux groupes. On dit que f : G → G′ est un morphisme (de groupes) si

∀x,y ∈ G f (x⊤y) = f (x)⊥ f (y)

On peut également dire que f est un morphisme de (G,⊤) dans (G′,⊥) : ceci permet de préciser quelles sont les
l.c.i. de G et de G′ pour lesquelles f est un morphisme de groupes. Il arrive parfois qu’on omette les lois ⊤ et ⊥ et
qu’on écrive : “ f est un morphisme de G dans G′ ”.

Définition 19.19

Soit (G,⊤) et (G′,⊥) deux groupes. Soit f : G → G′ un morphisme de groupes. On dit que :

• f est un isomorphisme (de groupes) si f est bijective.

• f est un endomorphisme (de G) si (G,⊤) = (G′,⊥), i.e. f est un morphisme de (G,⊤) dans (G,⊤).

• f est un automorphisme (de G) si f est un isomorphisme et un endomorphisme (de G).

Exemple 17. Montrer que les fonctions suivantes sont des morphismes de groupes. Sont-ce des isomorphismes ?
Des endomorphismes ? Des automorphismes ?

f : (Z,+)→ (Z,+) g : (R∗
+,×)→ (R,+)

n 7→ 2n x 7→ lnx

1. Traitons f : soit m,n ∈ Z. Tout d’abord, il est clair que f (n) = 2n ∈ Z donc f est
bien définie. De plus,

f (m+n) = 2(m+n) = 2m+2n = f (m)+ f (n)

donc f est un morphisme de groupes. f est de plus un endomorphisme (c’est
évident). Supposons par l’absurde que f soit bijective. Alors f serait surjective, et
en particulier, 1 ∈ f (Z). Donc il existerait n ∈ Z tel que 1 = 2n. Contradiction car
1 et 2n sont de parités différentes. Donc f n’est pas bijective et par suite, f n’est
pas un isomorphisme. Ainsi, f n’est pas non plus un automorphisme.

2. Traitons g : soit x,y ∈ R. Tout d’abord, g(x) = lnx ∈ R donc g est bien définie. De
plus,

g(x× y) = ln(x× y) = lnx+ lny = g(x)+g(y)

donc g est un morphisme de groupes. g n’est pas un endomorphisme ni un
automorphisme car R∗

+ ̸= R. Par ailleurs, g◦ exp = idR et exp◦g = idR∗
+

, donc g
est bijective (avec g−1 = exp). Ainsi, g est un isomorphisme.
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Théorème 19.20

Soit G et G′ deux groupes d’éléments neutres respectifs e et e′. Soit f : G → G′ un morphisme de groupes.
Avec la notation multiplicative :

1. f (e) = e′

2. ∀x ∈ G f (x−1) = f (x)−1

3. ∀x ∈ G ∀n ∈ Z f (xn) = f (x)n

Démonstration. On ne prouve que les deux premières assertions, la troisième étant une récurrence immédiate.

Pour la première assertion, f (e) = f (ee) et donc f (e) = f (e) f (e). Ainsi, en multipliant
par f (e)−1 à gauche, on trouve

f (e)−1 f (e) = f (e)−1 f (e) f (e)

et donc e′ = e′ f (e), ou encore e′ = f (e). Pour la seconde assertion, soit x ∈ G :

f (x−1) f (x) = f (x−1x) = f (e) = e′

et de même on montre que f (x) f (x−1) = e′. Donc f (x−1) est le symétrique de f (x),
ce qui signifie que f (x−1) = f (x)−1.

Exemple 18. Comme l’application ln : (R∗
+,×)→ (R,+) est un morphisme de groupes, on a :

1. ln1 = 0 2.∀x ∈ R∗
+ ln

(
1
x

)
=− lnx 3.∀x ∈ R∗

+ ∀n ∈ Z lnxn = n lnx

2.6 Noyau et image d’un morphisme

Théorème 19.21

Soit G et G′ deux groupes et f : G → G′ un morphisme de groupes.

• Si H est un sous-groupe de G, alors f (H) est un sous-groupe de G′.

• Si H ′ est un sous-groupe de G′, alors f−1(H ′) est un sous-groupe de G.

Pour rappel :

f (H) := .................................⊂ G′ f−1(H ′) := .................................⊂ G

Démonstration. Montrons la première assertion. Soit H un sous-groupe de G. Mq f (H)
est un sous-groupe de G′. Par définition, f (H)⊂ G′.

1. Ensuite, on a e ∈ H donc e′ = f (e) ∈ f (H).

2. Soit y1,y2 ∈ f (H). Mq y1y−1
2 ∈ f (H) (notation multiplicative). par définition, il

existe x1,x2 ∈ H tels que y1 = f (x1) et y2 = f (x2). On a donc

y1y−1
2 = f (x1) f (x2)

−1 = f (x1x−1
2 )
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et comme H est un groupe, x1x−1
2 ∈H. Ainsi, f (x1x−1

2 )∈ f (H), d’où y1y−1
2 ∈ f (H).

Finalement f (H) est un sous-groupe de G′.

Montrons la seconde assertion. Soit H ′ un sous-groupe de G′. Mq f−1(H ′) est un
sous-groupe de G. Par définition, f−1(H ′)⊂ G.

1. Ensuite, f (e) = e′ ∈ H ′ donc e ∈ f−1(H ′).

2. Enfin, soit x1,x2 ∈ f−1(H ′). Mq x1x−1
2 ∈ f−1(H ′). On a

f (x1x−1
2 ) = f (x1) f (x2)

−1

Or, f (x1) ∈ H ′ et f (x2) ∈ H ′ donc comme H ′ est un groupe, f (x1) f (x2)
−1 ∈ H ′.

On en déduit que f (x1x−1
2 ) ∈ H ′ donc x1x−1

2 ∈ f−1(H ′). Finalement, f−1(H ′) est
un sous-groupe de G′.

Définition 19.22 – Noyau

Soit G,G′ deux groupes d’éléments neutres respectifs e,e′. Soit f : G → G′ un morphisme de groupes. On
appelle noyau de f , noté Ker f , l’ensemble

Ker f :=
{

x ∈ G | f (x) = e′
}
= f−1 ({e′

})

Théorème 19.23

Avec les mêmes notations que la définition :

1. Ker f est un sous-groupe de G.

2. Ker f = {e} si et seulement si f est injective.

Démonstration. Montrons la première assertion : {e′} est un sous-
groupe de G′, donc f−1 ({e′

})
= Ker f est un sous-groupe de G par

le Théorème 19.21. Montrons maintenant la seconde assertion.
• Sens réciproque : supposons f injective. Comme f (e) = e′,

il est clair que e ∈ Ker f . Montrons l’autre inclusion, à savoir
Ker f ⊂ {e}. Soit x ∈ Ker f . Alors f (x) = e′ = f (e) et comme
f est injective, x = e. Ainsi, x ∈ {e} et on a bien l’inclusion
recherchée. D’où Ker f = {e}.

• Sens direct : supposons Ker f = {e} et montrons que f est

injective. Soit x,y ∈ G tels que f (x) = f (y). Alors :

f (x) f (y)−1 = e′

et comme f est un morphisme, on en déduit f (xy−1) = e′.
Ainsi, xy−1 ∈ Ker f = {e}. Donc, xy−1 = e, ou encore x = y.
Donc (par arbitraire sur x,y), f est injective.

Exemple 19. Montrer que (2πZ,+) est un groupe en utilisant le morphisme de groupes

f : (R,+)→ (C∗,×)

x 7→ eix

L’application f est-elle injective ?
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On remarque que

Ker f =
{

x ∈ R | eix = 1
}
= 2πZ

En particulier, 2πZ est un sous-groupe de (R,+) donc un groupe. Aussi, Ker f ̸= {0}
donc f n’est pas injective.

Définition 19.24 – Image

Soit G,G′ deux groupes d’éléments neutres respectifs e,e′. Soit f : G → G′ un morphisme de groupes. On
appelle image de f , noté Im f , l’ensemble

Im f := { f (x) | x ∈ G}= f (G)

Théorème 19.25

Avec les mêmes notations que la définition :

1. Im f est un sous-groupe de G′.

2. Im f = G′ si et seulement si f est surjectif.

Démonstration. Montrons la première assertion : G est un sous-
groupe de G, donc f (G) est un sous-groupe de G′ par le Théo-
rème 19.21.

La seconde assertion est tautologique : par définition, Im f = f (G)
et on a vu au chapitre sur les applications que f (G) = G′ si et seule-
ment si f est surjective.

Exemple 20. Montrer que (U,×) est un groupe en utilisant le morphisme de groupes

f : (R,+)→ (C∗,×)

x 7→ eix

Est-ce que f est surjective ?

On a

Im f = f (R) =
{

eix | x ∈ R
}
= U

Comme f est un morphisme, Im f =U est un sous-groupe de (C∗,×). Aussi, Im f ̸=C∗

donc f n’est pas surjective.

2.7 Groupe produit

Dans ce qui suit, on a choisi la notation g1,g2 pour deux éléments d’un groupe G et h1,h2 pour deux éléments
d’un groupe H. Ce ne sont pas des applications (sauf si G et/ou H contiennent des applications)
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Théorème 19.26 – Groupe produit

Soit (G,×) et (H,×) deux groupes. On peut définir une l.c.i. ⊗ sur G×H, dite loi produit par :

∀(g1,h1), (g2,h2) ∈ G×H (g1,h1)⊗ (g2,h2) = (g1g2, h1h2)

• (G×H,⊗) est un groupe, dit groupe produit de G et H.

• Son élément neutre est (eG,eH), où eG et eH sont les éléments neutre de G et H respectivement.

• Si (x,y) ∈ G×H, alors, en notation multiplicative : (x,y)−1 = (x−1,y−1).

• Enfin, si G et H sont abéliens, alors G×H l’est aussi.

Attention, la notation ⊗ est loin d’être universelle pour désigner une loi produit : on peut aussi noter ∗, voire
même ×, comme les lois de G et H !

Démonstration. On va montrer les trois premières assertions en
montrons que (G×H,∗) est un groupe. Montrons G1., i.e. ∗ est une
l.c.i. sur G×H. Soit (g1,h1) et (g2,h2) deux couples de G×H. On a

(g1,h1)∗(g2,h2)= (g1⊤g2, h1⊥h2)∈G×H car

{
g1⊤g2 ∈ G
h1⊥h2 ∈ H

Ainsi, ∗ est une l.c.i. sur G×H. On peut vérifier (mais c’est fasti-
dieux) que ∗ est associative. Montrons que G×H vérifie G3. et
G4.

• Montrons G3. Soit (x,y) ∈ G×H. On a

(eG,eH)∗ (x,y) = (eG⊤x,eH⊥y) = (x,y)

et de même (x,y)∗ (eG,eH) = (x,y). Ainsi, (eG,eH) est bien
élément neutre.

• Montrons G4. On a

(x−1,y−1)∗ (x,y) = (x−1⊤x,y−1⊥y) = (eG,eH)

et de même (x,y) ∗ (x−1,y−1) = (eG,eH). Ainsi, (x,y) est
bien symétrisable et (x,y)−1 = (x−1,y−1).

• Montrons enfin la dernière assertion. Si ⊤ et ⊥ sont com-
mutatives, alors

(g1,h1)∗(g2,h2)= (g1⊤g2,h1⊥h2)= (g2⊤g1,h2⊥h1)= (g2,h2)∗(g1,h1)

donc ∗ est commutative.

Exemple 21. (R,+) et (R∗,×) sont des groupes donc on peut munir l’ensemble E = R×R∗ de la loi produit

(x,y)� (x′,y′) := (x+ x′,yy′)

Dans ce cas, l’élément neutre de E est .......... et le symétrique d’un élément (x,y) de E est ...............

3 Anneaux

3.1 Anneau

Définition 19.27 – Monoïde, hors programme

Soit M un ensemble. On dit que (M,⊤) est un monoïde si :

M1. ⊤ est une l.c.i. sur M.

M2. ⊤ est associative : ∀a,b,c ∈ M a⊤(b⊤c) = (a⊤b)⊤c.

M3. M possède un élément neutre (pour ⊤) : ∃e ∈ M ∀a ∈ G a⊤e = e⊤a = a.

Autrement dit, un monoïde vérifie les mêmes propriétés qu’un groupe sauf la condition que chaque élément
doit être symétrisable : ce n’est pas nécessaire pour être un monoïde.

Exemple 22. (Z,×), (Q,×), (R,×) et (C,×) sont des monoïdes.
Étant donné un ensemble Ω quelconque, (P(Ω),∩) et (P(Ω),∪) sont des monoïdes.
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Définition 19.28 – Anneau

Soit A un ensemble. On dit que (A,+,×) est un anneau si :

A1. (A,+) est un groupe abélien.

A2. (A,×) est un monoïde. (× est une l.c.i. associative, et A admet un élément neutre pour ×)

A3. × est distributive par rapport à +, c’est-à-dire :

∀a,b,c ∈ A a(b+ c) = ab+ac et (b+ c)a = ba+ ca

Si de plus la loi × est commutative, on dit que (A,+,×) est un anneau commutatif.

• L’élement neutre pour + est noté 0A et appelé élément nul.

• L’élément neutre pour × est noté 1A et appelé élément unité.

• Pour tout x ∈ A, son symétrique par rapport à + est noté −x et est appelé l’opposé de x.

Définition 19.29

Soit (A,+,×) un anneau et a ∈ A. On dit que a est inversible si a est symétrisable par rapport à ×, càd :

∃b ∈ A ab = ba = 1A

Dans ce cas, un tel b ∈ A qui vérifie ces égalités est unique. On le note a−1 et on dit que c’est l’inverse de a.

Ainsi, si a est inversible , alors a−1 a un sens et aa−1 = a−1a = 1A.

Dans un anneau, il n’est jamais garanti qu’un élément donné soit inversible !

Anneaux usuels :

• (Z,+,×), (Q,+,×), (R,+,×) et (C,+,×) sont des anneaux commutatifs.

– Dans Q,R,C tout élément non nul x est inversible et x−1 =
1
x

.

– Dans Z seuls −1 et 1 sont inversibles et chacun est égal à son propre inverse.

• (RN,+,×) est un anneau commutatif.
0RN est la suite de terme général un = 0
1RN est la suite de terme général un = 1

• (RR,+,×) est un anneau commutatif.
0RR est la fonction x 7→ 0
1RR est la fonction x 7→ 1.

Exemple 23. Déterminer une condition nécessaire et suffisante pour qu’une suite u de l’anneauRN soit inversible.

u est inversible ssi il existe v ∈ RN telle que uv = 1RN, i.e. que pour tout n ∈ N, on a

(uv)n = unvn = 1

◦ S’il existe n ∈ N tel que un = 0, alors aucune valeur de vn ne convient. On en
déduit que u n’est pas inversible, sinon on aurait une contradiction.
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◦ Si pour tout n ∈ N, on a un ̸= 0, alors on peut poser la suite v de terme général

vn =
1
un

, de sorte que unvn = 1.

Finalement, on en conclut que seules les suites qui ne s’annulent pas sont inversibles.

3.2 Sous-anneau

On rappelle que la notion de sous-ensemble stable par l.c.i. et de loi induite a été vue à la définition 19.12.

Définition 19.30

Soit (A,+,×) un anneau. Une partie B ⊂ A est dite un sous-anneau de A si B est stable par les l.c.i. + et
×, et que (B,+B,×B) est un anneau, où +B,×B sont les lois induites par +,× sur B.

Comme pour les groupes, on fait souvent un abus de notation en notant + et × les lois induites +B et ×B. Pour
vérifier que (B,+,×) est un anneau, il faudrait donc vérifier les propriétés A1. à A3.. En pratique, on utilise la
caractérisation suivante :

Théorème 19.31

Soit (A,+,×) un anneau. Une partie B ⊂ A est un sous-anneau de A si et seulement si :

1. 1A ∈ B

2. ∀x,y ∈ B x− y ∈ B

3. ∀x,y ∈ B xy ∈ B

On notera que A n’intervient pas dans les assertions 1–2–3, et qu’il suffit de vérifier que B ⊂ A, qui est une
“condition zéro”.
Démonstration. On vérifie que les assertions A1. à A3. sont vraies
pour B.

1. Montrons que (B,+) est un groupe abélien. On va montrer
que c’est un sous-groupe de (A,+).

• Par les assertions 1 et 2, en prenant x = y = 1A, on a
x− y = 1A −1A = 0A ∈ B donc B contient l’élément
neutre pour la loi +.

• De plus, comme on a 2, on vérifie que (B,+) est un
sous-groupe de (A,+) donc un groupe (proposition
19.16).

• Enfin, (B,+) est un sous-groupe du groupe abélien
(A,+), donc (B,+) est abélien.

Finalement (B,+) est un groupe abélien.

2. Montrons que (B,×) est un monoïde.

• Par 3, × est une l.c.i. sur B
• Par 1, B possède un élément neutre pour ×.
• Comme × est associative sur A et que B ⊂ A, on en

déduit que × est associative sur B.

3. Il faut enfin montrer que, sur B, × est distributive sur +,
c’est-à-dire :

∀x,y,z ∈ B x(y+z) = xy+xz et (y+z)x = yx+zx

Or, on a en particulier x,y,z ∈ A et comme A est un anneau,
les relations ci-dessus sont vérifiées. D’où le résultat.

Exemple 24. ◦ Z, D et Q sont des sous-anneaux de (R,+,×).

◦ Z, D, Q et R sont des sous-anneaux de (C,+,×).

◦ On note C l’ensemble des suites réelles convergentes. C est un sous-anneau de (RN,+,×).

On a C ⊂ RN par définition.

– On a 1RN ∈C car 1RN est constante donc est convergente.

– Soit u,v ∈C. Alors par opérations sur les limites la suite u− v converge vers
limun − limvn, donc u− v ∈C.
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– De même, uv converge vers (limun)× (limvn) donc uv ∈C

Finalement, C est bien un sous-anneau de RR.
◦ L’ensemble des fonctions polynômiales est un sous-anneau de (RR,+,×).

3.3 Calcul dans un anneau

Sur un anneau (A,+,×), on peut définir une l.c.i. − par 2 :

pour tous a,b ∈ A, a−b := a+(−b)

On dispose alors des règles de calcul usuelles : pour tous a,b,c ∈ A,

• a0A = 0Aa = 0A (0A est absorbant pour ×)

• −(ab) = (−a)b = a(−b)

• a(b− c) = ab− (ac) (distributivité de × sur −)

Démonstration. On ne montre que les deux premières formules. Pour la première, on a

a0A +a0A = a(0A +0A) = a0A

En retranchant a0A des deux côtés, on obtient a0A = 0A. On montre de même que
0Aa = 0A. Pour la seconde formule, comme × est distributive sur + :

ab+(−a)b = (a+(−a))b = 0Ab = 0A

donc ab est bien l’opposé de (−a)b, autrement dit (−a)b = −(ab). On montre de
même que a(−b) =−(ab).

Grâce à ces formules, on peut écrire sans ambiguité “−ab” : c’est aussi bien −(ab), i.e. l’opposé de ab, que (−a)b,
i.e. l’opposé de a multiplié par b. On peut donc réécrire les deux dernières formules :

−ab = (−a)b = a(−b) et a(b− c) = ab−ac

Théorème 19.32 – Formules du binôme et an −bn, version anneaux

Soit (A,+,×) un anneau. Alors pour tous a,b ∈ A et n ∈ N,

ab = ba =⇒ (a+b)n =
n

∑
k=0

(
n
k

)
akbn−k

et si n ∈ N∗,

ab = ba =⇒ an −bn = (a−b)
n−1

∑
k=0

akbn−1−k =

(
n−1

∑
k=0

akbn−1−k

)
(a−b)

Ne pas oublier que a et b doivent commuter pour appliquer ces formules !

2. On peut aussi définir la l.c.i. − sur un groupe (G,+).
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Exemple 25. Soit (A,+,×) un anneau. Soit a ∈ A et n ∈ N tels que an = 0. Montrer que 1A −a est inversible et
calculer son inverse.

On a immédiatement 1n
A = 1A, et donc

1A = 1n
A −an = (1A −a)

n−1

∑
k=0

ak =

(
n−1

∑
k=0

ak

)
(1A −a)

Ainsi, en posant s :=
n−1

∑
k=0

ak ∈ A, on a (1A − a)s = s(1A − a) = 1A. On en déduit que

1A −a est inversible, et que (1A −a)−1 = s =
n−1

∑
k=0

ak.

Remarque (Cas 1A = 0A). La définition d’un anneau (A,+,×) n’exclut pas la possibilité que 1A = 0A. Dans ce
cas, pour tout x ∈ A,

x = x1A = x0A = 0A

si bien que tout élément de A est égal à 0A. Autrement dit, A = {0A}. On dit alors que A est un anneau trivial.

3.4 Morphismes d’anneaux

Définition 19.33 – Morphisme d’anneaux

Soit (A,+,×) et (A′,⊕,⊗) deux anneaux. Une application f : A → A′ est appelée un morphisme
(d’anneaux) si

∀a,b ∈ A f (a+b) = f (a)⊕ f (b)

∀a,b ∈ A f (a×b) = f (a)⊗ f (b)

f (1A) = 1A′

On dit aussi que f est un morphisme de A dans A′, pour préciser les anneaux de départ et d’arrivée. On omettra
en général les lois +,× et ⊕,⊗.

Définition 19.34

Soit (A,+,×) et (A′,⊕,⊗) deux anneaux. Soit f : A → A′ un morphisme d’anneaux. On dit que :

• f est un isomorphisme (d’anneaux) si f est bijective.

• f est un endomorphisme (de A) si (A,+,×) = (A′,⊕,⊗).

• f est un automorphisme (de A). si f est un isomorphisme et un endormorphisme (de A).

Exemple 26. ◦ L’application z 7→ z est un automorphisme de l’anneau (C,+,×).

◦ L’application (un) 7→ limun est un morphisme de l’anneau des suites convergentes dans R.
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4 Inversibles d’un anneau, corps

4.1 Éléments inversibles d’un anneau

Théorème 19.35

Soit A un anneau et soit a et b deux éléments inversibles de a.

• Le produit ab est aussi inversible et (ab)−1 = b−1a−1.

• a−1 est inversible et (a−1)−1 = a.

Démonstration. La preuve est très similaire à celle du Théorème 19.9.

Comme déjà dit, rien ne permet de dire qu’un élément quelconque d’un anneau A est inversible ou non. On
peut mentionner que 1A est inversible et est son propre inverse puisque 1A1A = 1A. En revanche, dès que A est
non trivial, on peut montrer que 0A n’est pas inversible car il n’existe aucun b ∈ A tel que 0Ab = 1A.

Notation. Soit (A,+,×) un anneau. L’ensemble des éléments inversibles de A sera noté Inv(A) dans ce cours.
Cette notation n’est pas officielle. On trouve aussi la notation A×...

Théorème 19.36

Soit (A,+,×) un anneau. Alors (Inv(A),×) est un groupe, appelé groupe des inversibles de A.

Démonstration. On vérifie les propriétés G1. à G4.. On s’appuie sur le Lemme 19.13 et le Théorème 19.35 :

1. × est une l.c.i. sur Inv(A) : pour tous a,b ∈ Inv(A), on a vu que ab est inversible
avec (ab)−1 = b−1a−1. Pour plus de clarté dans la preuve, on va noter ×Inv(A)
la loi induite par × sur Inv(A). Il faut donc montrer que (Inv(A),×Inv(A)) est un
groupe.

2. Comme × est associative (sur A) et que Inv(A)⊂ A, on en déduit que ×Inv(A) est
associative.

3. 1A est l’élément neutre de ×. De plus 1A est inversible (avec 1−1
A = 1A). Ainsi 1A

est l’élément neutre de ×Inv(A).

4. Soit a∈ Inv(A). Montrons que a est symétrisable pour×Inv(A). Comme a∈ Inv(A),

on en déduit que a est symétrisable pour × : son symétrique est a−1. De plus, a−1

est inversible (avec (a−1)−1 = a) donc a−1 ∈ Inv(A). Ainsi a est inversible pour
×Inv(A), d’inverse a−1.

Exemple 27. Le groupe des inversibles de (Z,+,×) est {−1,1}, qui est bien un groupe pour ×.
Les groupes des inversibles des anneaux Q,R,C sont Q∗,R∗,C∗ respectivement.

Le groupe des inversibles de RN est l’ensemble des suites (un) qui ne s’annulent pas : on a alors (un)
−1 =

(
1
un

)
.
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4.2 Calcul dans un anneau (inversibilité)

Théorème 19.37

Soit A un anneau. Si a ∈ Inv(A) , alors a est régulier :

∀x,y ∈ A ax = ay =⇒ x = y et xa = ya =⇒ x = y

Il est essentiel que a soit inversible. Contre-exemple : si a = 0A, on a toujours 0Ax = 0Ay mais pas nécessairement
x = y.

Définition 19.38 – Diviseur de zéro

Soit (A,+,×) un anneau. On appelle diviseur de zéro tout élément a ∈ A\{0A} tel que

∃b ∈ A\{0A} ab = 0A

Définition 19.39 – Anneau intègre

Soit (A,+,×) un anneau. On dit que A est un anneau intègre si :

I1. A ̸= {0A}
I2. A est commutatif.

I3. ∀a,b ∈ A ( ab = 0A =⇒ a = 0A ou b = 0A )

La condition I3. est équivalente à dire que A ne contient pas de diviseur de zéro.

Exemple 28. Les anneaux Z, Q, R et C sont intègres.

Dans un anneau intègre, “si un produit est nul, (au moins) un des facteurs du produit est nul”. Cela est vrai sur Z,
Q, R et C, mais ce n’est pas automatique ! Cf les exemples ci-dessous.

Exemple 29. Montrons que (R2,+,×) n’est pas intègre. On a (0,1)× (1,0) = (0,0) alors que (0,1) et (1,0) ne
sont pas égaux à 0R2 , qui vaut (0,0). Ainsi (0,1) et (1,0) sont des diviseurs de zéro. D’où (R2,+,×) n’est pas
intègre.

Exemple 30. (RR,+,×) n’est pas intègre. En effet, si on pose f : x 7→

{
0 x ≤ 0
|x| x ≥ 0

et g : x 7→

{
|x| x ≤ 0
0 x ≥ 0

alors f g ≡ 0 mais f ̸≡ 0 et g ̸≡ 0. Ainsi, f et g sont des diviseurs de zéro.

Théorème 19.40

Dans un anneau intègre A, tout élément différent de 0A est régulier.

Démonstration. Soit a ∈ A\{0A}. Montrons pour commencer que a est régulier à gauche.
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Soit x,y ∈ A. Alors

ax = ay =⇒ a(x− y) = 0A

=⇒ a = 0A ou x− y = 0A car A est intègre

=⇒ x− y = 0A car a ̸= 0A

=⇒ x = y

Donc a est régulier à gauche. De même, a est régulier à droite, donc est régulier.

4.3 Corps

Définition 19.41

Un anneau (K,+,×) est appelé un corps si :

K1. K ̸= {0K}
K2. K est commutatif.

K3. Tout élément non nul de K est inversible.

On note en général K∗ :=K\{0K} le groupe des inversibles de K.

Exemple 31. Q, R et C sont des corps. Z n’est pas un corps car, par exemple, 2 est un élément non nul de Z qui
n’est pas inversible.

Théorème 19.42

Tout corps est un anneau intègre. La réciproque est fausse (contre-exemple : Z).

Démonstration. Soit K un corps. Il suffit de vérifier la condition I3. de la Définition 19.39. Soit a,b ∈K tels que
ab = 0K. Montrons que a = 0K ou b = 0K. Si a = 0K, alors l’assertion est vérifiée. Si a ̸= 0K, alors a est inversible,
donc

a−1ab = a−10K = 0K

si bien que b = 0K. D’où le résultat.

Définition 19.43 – Sous-corps, hors programme ?

Soit (K,+,×) un corps. Une partie L⊂K est un sous-corps de K si L est stable par les l.c.i. + et ×, et que
(L,⊕,⊗) est un corps, où ⊕,⊗ sont les lois induites par +,× sur L.

À nouveau, on commet l’abus de notation en confondant les lois induites ⊕,⊗ avec les lois +,×.
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Théorème 19.44 – Hors programme ?

Soit (K,+,×) un corps. Une partie L⊂K est un sous-corps de K si et seulement si :

1. L ̸= {0K} et L ̸=∅ (ou de manière équivalente L\{0K} ̸=∅)

2. ∀x,y ∈ L x− y ∈ L
3. ∀x,y ∈ L×L∗ xy−1 ∈ L

Exemple 32. Q est un sous-corps de R, qui est lui-même un sous-corps de C.

5 Méthodes pour les exercices

Méthode

Pour montrer qu’un ensemble E est un groupe, on peut :

1. Montrer que c’est le sous-groupe d’un groupe usuel.

2. Vérifier si E n’est pas égal à Inv(A) pour un anneau usuel A (il faut que la loi de E soit ×).

3. Montrer que E = Im f ou E = Ker f avec f : G → G′ un morphisme de groupes.

4. Montrer que E = f (H) ou E = f−1(H ′) avec H et H ′ des sous-groupes de G et G′.

5. Si E s’écrit comme un produit de deux groupes, vérifier si E est le groupe produit de ces deux
groupes.

6. En dernier recours, vérifier G1. à G4..

Méthode

Pour montrer qu’un ensemble E est un anneau, on peut :

1. Montrer que c’est le sous-anneau d’un anneau usuel.

2. En dernier recours, vérifier A1. à A3..
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